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a b s t r a c t

It is proposed to use a technique developed for polygons in polar nets to integrate equations of the
Fuchs class that arise when solving a wide range of problems of plane steady seepage flow using the
Polubarinova-Kochina method, based on the use of the analytical theory of linear differential equations.
It is shown that, for a large class of pentagons in domains where the flows,which are very characteristic of
seepage problems when there is infiltration or evaporation from the free surface, have a complex velocity,
the solution of the problem of determining the unknown parameters which appear in the conformal
mapping can be completed. In this case, the mapping is carried out in closed form in terms of elementary
functions and it is simple and convenient for subsequent application. The results obtained are used to
solve the problem of seepage from a channel, taking account of the capillarity of the ground when there is
evaporation from the free surface. The results of numerical calculations are presented and a hydrodynamic
analysis of the effect of the basic physical parameters of the model on the dimensions of the saturation
zone is given.
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It is well known 1–3 that the use of the Polubarinova-Kochina method, which is based on the application of the analytical theory of linear
differential equations of the Fuchs class, in solving seepage problems in more complex formulations and with allowance for additional
factors gives rise to problems of a fundamental nature. The point is that the mapping problem in the case of circular polygons can still
not be fully solved solely by integration of equations of the Fuchs class. In order to verify this, it is sufficient to recall the problem of the
parameters of the Christoffel–Schwarz integral for the case of rectilinear polygons. Even when the analytical apparatus for representing of
the mapping function is known, its construction is quite laborious. The case, when arcs of circles are found among the sides of a polygon is
far more complex and, although the form of the differential equation which the mapping function satisfies (the Schwarz equation) is also
known here, this equation, unlike in the case of rectilinear polygons, not only cannot be integrated in the general case but its integration
for each specific polygon involves major mathematical difficulties.

The reason for this lies in the fact that the coefficients of the differential equations (which, in the final analysis, determine the character
of its integrals), in addition to the undetermined affixes of the vertices of the polygon, also contain so-called accessor parameters which
are also unknown in advance 4,5. These parameters are not completely determined by the position of the singular points of the equation
and the exponents in them. It is only known that they must be uniquely defined by the geometry of the polygon but the relation between
the above mentioned parameters and the geometric characteristics of a given polygon are also unknown in advance and, so far, no general
and convenient method for solving this problem exists.

For the above mentioned reasons, the nature of the solutions of equations of the Fuchs class has not been investigated in depth and, in
order to study their properties, it is necessary to resort to various indirect methods: the use of a Riemann boundary value problem, and the
methods of Lappo-Danilevskii and Fock (see for example, Refs. 6–8). However, these general investigations have still not led to a practical
solution of the new range of problems in the theory of seepage which seriously restricts the use of the Polubarinova-Kochina method. The
study of special cases, which are characteristic in the case of problems in seepage, theory but, nevertheless, are of a fairly general character,
is therefore of interest. Here, as has been pointed out in Refs. 9–11, circular polygons in polar nets (Ref. 5, p. 27, 135), which are bounded
by arcs of concentric circles and line segments passing through the origin of the coordinates, as well as polygons which do not belong to
this class but are similar to them are very typical.
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Fig. 1.

According to the generally accepted method (Ref. 5, p. 175), these polygons are transformed by means of the function w = lnz into
rectilinear polygons with subsequent application of the Christoffel–Schwarz formula. However, this route leads to a large increase in the
number of unknown conformal mapping parameters.

In the first place, the location of the branch points, z = 0 and z = ∞, of the logarithm, at which the conformability of the mapping is
violated, with respect to the mapped domain (on the boundary or within it) has to be taken into account each time. In order to achieve
uniqueness in the first case, it is necessary to draw an additional cut from the point z = 0 to the boundary of the domain which immediately
increases the number of conformal mapping parameters by three. If, however, the point z = 0 lies on the boundary of the mapped domain,
then an additional vertex at infinity with a zero angle in the w plane will correspond to this boundary point in the case of the above
mentioned mapping, so that the number of parameters increases here also. In any case, the use of a logarithmic function in the solution
will therefore lead from the very beginning to an increase in the number of parameters. This last fact, when account is taken of the addition
of the corresponding coefficients in the integrand of the Christoffel–Schwarz formula (Ref. 5, p. 177), leads to very unwieldy calculations
and, as a consequence, to integrals which are not expressed in terms of special functions.

Secondly, the overall number of conformal mapping parameters increases significantly when account has to be taken of the parameters
which appear when solving a specific seepage problem. A particular problem is the scale constant of the modelling (see below the parameter
A in formulae (4.4)) as well as the affixes of the removable singular points which occur in the physical plane but are absent in the z plane.
Hence, the solution of the problem is further complicated.

Unlike the traditional approach in previous papers, 12–14 it is proposed to make use of special methods, precisely adapted to the class
of polygons in polar nets considered, based on the idea of finding particular solutions of equations of the Fuchs class in the form of linear
combinations with undetermined coefficients from the known particular solutions of several simpler equations with three singular points.
The technique developed for polygons in polar nets is used below to solve the problem of the conformal mapping of circular pentagons
which do not belong to this class, that is, polygons with a more complex structure.

The problem of the conformal mapping of a circular quadrangle in polar nets {�/2, ��, 2�, �/2} with an arbitrary angle �v and a cut is
initially solved. Then, using the technique of “smoothing out” or “unrolling” of the angles in the beginning, 1 we consider a circular pentagon
{�/2, ��, 2�, ��, �/2} with two angles, �� and ��, and a cut which also belongs to the class of polygons in polar nets. (Henceforth, we will
use the well-known terminology and notation in Ref. 5.) Finally, using the solution obtained, the integrals of an equation of the Fuchs type,
which also has five singular points but which corresponds to a circular pentagon of an even more complex structure which does not belong
to the class of pentagons in polar nets, are found. Here, at all stages of the solution, the conformal mapping parameters are determined
when constructing the particular solutions and, therefore, the problems of accessor parameters do not subsequently arise. Taking account
of the specific features which are characteristic of the classes of polygons considered, the solutions obtained at each stage are expressed in
closed form in terms of elementary functions and are therefore the simplest and most convenient for their subsequent application. Finally,
the results obtained are used to solve the problem of seepage from a channel, taking account of the capillarity of the ground when there is
evaporation from the free surface. The results of numerical calculations are presented and a detailed hydrodynamic analysis of the effect
of the basic governing physical parameters of the model on the dimensions of the saturation zone is given.

1. Solution of the problem of the conformal mapping of a circular quadrangle {�/2, ��, 2�, �/2} in polar nets. The parameter
problem

Suppose a circular quadrangle {�/2, ��, 2�, �/2} with an arbitrary angle �� (0<�<1, �=�/�) at the vertex B2 and a cut with a vertex
at the point A1 is given in the z plane (Fig. 1, a). The differential quation of the Fuchs class corresponding to the problem of the conformal
mapping of the � upper half-plane (Fig. 1, b) onto the domain considered has the form

(1.1)

where �0 is an accessor parameter. We recall that, in Eq. (1.1), the pre-image a1 (1<a1<∞) of the vertex of the cut A1, as well as the accessor
parameter �0, remain unknown when formulating the problem and must be determined during the course of its solution.
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Fig. 2.

The change of variables

(1.2)

transforms Eq. (1.1) to the form

(1.3)

and transfers the � upper half-plane into the half-strip Ret>0, 0<Imt<�/2 of the t plane (Fig. 2).
Linearly independent integrals of Eq. (1.3) have been constructed 12–14 in the form of linear combinations with undetermined coefficients

of known particular solutions of a simpler hypergeometric equation 1,4,5 which, in this case, take the form

(1.4)

where C1 and C2 are certain appropriate constants to be determined. If expressions (1.4) are substituted into Eq. (1.3) and the terms in ch
�t and sh �t in the resulting equation are collected and equated to zero, then, in both cases, we arrive at the same homogeneous system of
linear algebraic equations

(1.5)

In order for the constants C1 and C2 to be non zero, it is necessary and sufficient that the determinant of system (1.5) equals zero. This
requirement gives the following relation between the parameters a1 and �0

(1.6)

Note that Eq. (1.6) is identical to the Kochina condition (Ref. 1, p. 255) for the vertex of the cut A1.
Putting C=C2/C1, we obtain expressions for the initial mapping constants:

or

(1.7)

It therefore turns out that the parameter C is a uniformizing variable (Ref. 4, p. 414) for Eq. (1.6) which gives unique representations of
the conformal mapping parameters a1 and �0.

Equations (1.7) are the equation of a hyperbola in parametric form. If the curves (1.7) are schematically represented in the form a=a1(C)
and �0=�0(C), then, in the (a1,�0) plane, this hyperbola passes through the point (0,0) and (0, −2) and has asymptotes

Thus, the functions (1.4) represent the solutions of Eq. (1.3) only for those values of the parameters a1 and �0 which are the coordinates
of points in the (a1,�0) plane lying on the given hyperbola. Of course, in the final analysis, this last fact imposes constraints on the range of
variation in the physical parameters of the hydrodynamic problem considered.
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The function which completes the conformal mapping of the half-strip in the t plane onto the circular quadrangle in the z plane
considered must be expressed in terms of the ratio of linear combinations of the integrals �1(t) and �1(t) (1.4). If such combinations are
constructed and use is made of the correspondence of the vertices B1, B2 and B4 in the t and w planes, we obtain

(1.8)

The requirement of correspondence for the vertex of the cut A1 enables us to determine the constant C which, up to the present, has
remained undetermined. Note that, in the limiting case, when the cut disappears and the circular quadrangle degenerates into a triangle,
we have C = 1, that is, C1 = C2 and, consequently, a1 = 1.

The validity of expression (1.8), when relation (1.6) is satisfied, can be established by direct verification. (This refers to all the mapping
functions obtained in Sections 2 - 4.)

2. Construction of the integrals of an equation of the Fuchs class with five singular points corresponding to the problem of the
conformal mapping of a circular pentagon {�/2, ��, 2�, ��, �/2} in polar nets

We apply the transformation

(2.1)

to the circular quadrangle {�/2, ��, 2�, �/2} in polar nets (Fig. 1, a) which transfers the initial domain into the circular pentagon {�/2, ��,
2�, 2�, �/2} in polar nets with angles �� and �� at the vertices B2 and B3, which fall onto the origin of the coordinates, and a cut (Fig. 3,
a). We note that

The equation of the Fuchs class with five singular points, which corresponds to the problem of the conformal mapping of the upper �
half-plane onto the resulting circular pentagon in polar nets, has the form

(2.2)

where, together with a1, the affix c(a1<c<∞) corresponding to the vertex B3 and the accessor parameters �1 and �0 still remain undeter-
mined.

Using the Ostrogradskii–Liouville formula (Ref. 4, p. 207)

where p(t) is the coefficient of �′ in Eq. (2.2), from the expression for the mapping function (2.1) we find the two linearly independent
integrals (2.2) in the form of the following functions of the uniformizing parameter C

(2.3)

In this case, the mapping constant a1 takes the previous value, and the parameters c=C2.
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We stress that it is not so much their completeness but their symmetry which is the undoubted advantage of expressions (2.3). Other
methods of solving the problem, which differ from the use of the analytical theory of linear differential equations of the Fuchs class (the
use of linear-fractional transformations with subsequent application of the Christoffel–Schwarz formula), do not enable us to discern such
properties of integrals (2.3).

3. Solution of the problem of the conformal mapping of a circular pentagon {�/2, ��, 2�, ��, −�/2} which does not belong to
the class of polygons in polar nets. The parameter problem

We will now consider, as an example, the domain shown in Fig. 3, b and immediately emphasize that the circular pentagon considered,
with a cut and the angles �� and �� (� = 1 − � = 2�−1arctg

√
�, 0 < � ≤ 1) at the vertices B2 and B3, is not a polygon in polar nets, since

the centre of the circle w0=(1−�)i/2 only coincides with the origin of coordinates for single value when � = � = 1/2, that is, when � = 1.
The equation of the Fuchs class corresponding to the problem of the conformal mapping of this circular pentagon completely retains

the form of (2.2) here, and this means that the integrals (2.3) are found to be the same as before. It remains to solve the parameter problem:
to relate the conformal mapping constants a1, c, �1 and �0 to the geometric characteristics of the pentagon shown in Fig. 3, b.

If, following what was done in Section 1, expressions (2.3) are substituted into Eq. (2.2) which, after the change of variable (1.2), takes
the form

and the terms in ch8−itshk
t, where k=[1−(−1)i]/2, i=0, 1,2,. . ., 8 in the resulting equation are collected and equated to zero, then, in both

cases, we arrive at one and the same homogeneous system of nine equations. Analysis of the equations of this system shows that the
equations are identically satisfied when i = 0, 1, 7, 8 so that, after discarding them, the system takes a form which is completely analogous
to system (1.5):

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

Equations (3.1), (3.2), (3.4) and (3.5) of this system enable us successively to determine all the required mapping constants in terms of
the parameter C:

(3.6)

Following the well-known procedure (Ref. 1, p. 255), we now derive the condition for the vertex of the cut A1 in the case considered.
This point must be a regular point of the solution of differential equation (2.2), that is around it the fundamental system of solutions must
not contain a logarithm and, consequently, it must have the exponents (0,2). However, the derivative of these functions with respect to �
must then also belong to the indices (0,1). Constructing the differential equation which d�/d� satisfies, where � is the solution of Eq. (2.2),
and using the notation d�/d�=	, we obtain the following equation for 	

(3.7)

where
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Fig. 4.

It is clear that the term with 1/(�−a1) vanishes in the coefficient of 	′. The condition that � = a1 must be a regular point of Eq. (3.7)
requires that the polynomial Q(�) is divided by �−a1. This condition leads to the equation

(3.8)

If the values found above for the parameters of the mapping (3.6) are substituted into Eq. (3.8), we arrive at Eq. (3.3) of the system.
Consequently, Kochina’s condition (3.8) and Eq. (3.3) are equivalent, which enables us to eliminate Eq. (3.3) from the system.

Hence, the system of four equations (3.1), (3.2), (3.4) and (3.5) is uniquely solvable for the required parameters (3.6) as functions of the
single parameter C which, as in Section 2, turns out to be the uniformizing variable (Ref. 4, p. 414) for Eq. (3.8), that is, which gives unique
representations of the parameters a1, c, �1 and �0.

Note that, in the limiting case when the cut disappears, that is, when C = 1, Eqs (3.1), (3.2), (3.4) and (3.5) turn into an identity and, from
(3.6), we obtain a1=c=1,�1=�0=0.

The function completing the conformal mapping of the half- strip of the t plane (Fig. 2) onto the circular pentagon of the w plane (Fig. 3,
b), which must be expressed in terms of the ratio of linear combinations of the integrals (2.3), takes the form

(3.9)

Here,

(3.10)

We recall that this circular pentagon {�/2, ��, 2�, ��, �/2} does not belong to the class of polygons in polar nets and the use of linear-
fractional transformations and a reduction to a rectilinear hexagon does not directly lead to formula (3.9) which clearly demonstrates the
symmetry.

Note that the circular pentagon shown in Fig. 3, b is very typical of problems of underground hydromechanics and, in particular, in
the study of flows with free boundaries. If uniform seepage or evaporation of an intensity � occurs on these boundaries, the well known
non-linear equation (Ref. 1, p.55)

(3.11)

must be satisfied on the depression curve, where k is the seepage coefficient and u and � are the components of the complex velocity
w=u+i�. Equation (3.11) is the equation of a circle passing through the points (0, �) and (0, k) with its centre at the point (0,(k+�)/2 and a
radius equal to (k−�)/2. In the case of seepage, � > 0, and, when � < 0, we have evaporation from the free surface. Taking account of the fact
that, in complex hydromechanical schemes, there is necessarily in inflection point on the depression curves (and in isolated cases there
is not one), we obtain that, in the plane of the complex velocity w, the cut along the arc of the circle (3.11) represented in Fig. 3, b (when
k = 1) corresponds to the part B2A1B3 of the free surface of the plane of the flow z. Such a configuration in domains of complex flow velocity
is especially characteristic of problems involving seepage from channels.

4. Application of the results. The problem of determining the dimensions of the saturation zone in the case of seepage from a
channel

We will now demonstrate the use of integrals (2.3) and the mapping function (3.9) in solving a plane steady seepage problem (using
the Darcy’s law).

We will consider the problem of determining the dimensions lk and L of the saturation zone in the case of a flow from a channel with
a low level of water of width 2l into a layer of homogeneous isotropic ground of thickness T underlain by a horizontal confining stratum
(Fig. 4). The uniform evaporation from the free surface of intensity �(0<�<1) is the discharge factor compensating the seepage from the
channel.
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We introduce the complex potential of the motion w=
+i�, where 
 is the velocity potential and � is the stream function, and the
complex coordinate z = x + iy, referred to kT and T respectively. By virtue of the symmetry, we will confine ourselves to considering of the
right-hand half of the flow domain AB1B2A1B3B4.

We will assume that 
 = 0 along the channel bottom AB4 and that � = 0 along the line of symmetry AB1. In the segment B3B4, we put
� = Q, where Q is the required rate of seepage from the channel. Hence, according to Verigin, 15,16 the segment B3B4 is considered to be the
impermeable line of outflow of the capillary waters onto the surface of the earth. The following boundary conditions are satisfied

(4.1)

when the coordinates one chosen as shown in Fig. 4 and the plane of comparison of the potentials and the plane y = 0 are matched on the
boundary of the domain of motion, where hk is the static height of the capillary rise of the ground water and lk is the required width of the
capillary spreading of the water. Assuming that x = L in the second condition of (4.1) for B2A1B3, we obtain

(4.2)

The last relation expresses the equality of the flow rate from the channel to the amount of evaporation from the free surface under
conditions of steady seepage. The capacity of the stratum T, the channel width l and the static height of the capillary spreading of the water
hk are assumed to be given.

In this case, the domain of the complex velocity w, corresponding to boundary conditions (4.1), is the circular pentagon studied in Section
3 (Fig. 3, b) with angles at the vertices B2 and B3 equal to ��=�(1−�) and ��=��, where (� = 2arctg

√
�/�. In this case, the mapping function

(3.9) takes the form

(4.3)

We use the Polubarinova-Kochina method. This is based on the use of the analytical theory of linear differential equations of the Fuchs
class, 1 to solve boundary-value problem (4.1). Assuming that w=d�/dz, determining the indices of the functions d�/dt and dz/dt close to
the singular points (Ref. 1, p. 259) and taking account of relation (4.3), we arrive at the relations

(4.4)

where A > 0 is the scaling constant, and the ordinate b and the abscissa d are unknown affixes of the points A and B3 in the t plane respectively
(Fig. 2). It can be verified that the functions (4.4) satisfy conditions (4.1) which have been formulated in terms of the functions d�/dt and
dz/dt and are therefore the parametric solution of the initial boundary-value problem.

Writing representations (4.4) for different parts of the boundary of the domain t with subsequent integration over the whole contour
of the auxiliary domain (Fig. 2) leads to the closure of the domain of motion z and thereby serves as a control of the calculations.

As a result, we obtain expressions for the basic geometric and seepage characteristics

(4.5)

which enable us to determine the unknown parameters of the conformal mapping B and D as well as the modelling constant A. After the
unknown constants have been found, the required dimensions of the saturation zone are successively calculated using the formulae

(4.6)

after which the flow rate Q is determined using formula (4.2).
The other expressions for the flow rate Q and the capacity T:

(4.7)
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Table 1

Varied parameter L×103 lk×104 Q×103 Varied parameter L×103 lk×104 Q×103

hk × 102 = 10 3461 425 888 � × 102 = 10 7752 4998 605
25 3769 1207 979 25 5008 2742 884
40 4031 2163 1046 40 4031 2163 1046
55 4271 3291 1097 55 3495 1888 1158
70 4501 4585 1137 70 3147 1722 1243
l × 102 = 30 2326 1577 748 T × 102 = 50 2408 4245 313
75 3372 1943 971 125 3278 2761 721
120 4031 2163 1046 200 4031 2163 1046
165 4571 2285 1077 275 4644 1880 1302
210 5063 2349 1091 350 5128 1733 1502

serve as a control on the calculation. In expressions (4.5)–(4.7) (the upper sign on the right is chosen for the upper function on the left)

In the limiting case when hk = 0, that is, there is no ground capillarity, the vertex of the cut A1 in the plane of the complex velocity w
reaches the ordinate axis and the circular pentagon degenerates into an circular triangle: in the flow plane z, the point of inflection A1, on
merging with the point B3, reaches the abscissa. In this case, the parameters d = 0, D = 1 and C=∞, and it follows from the first formula of
(4.6) that lk = 0 and the results found earlier are obtained. 17

5. Analysis of the numerical results

The flow pattern calculated for

(5.1)

is shown in Fig. 4.
The results of the calculations of the effect of the governing physical parameters hk, �, l and T on the dimensions of the saturation

zone L, lk and the flow rate Q are presented in Table 1 which is subdivided by double lines into four blocks. In each of them, one of the
above mentioned parameters is varied in the admissible range while the values of the remaining parameters are fixed in accordance with
equalities (5.1). The dependences of lk and L on the parameters �, hk, l and T respectively are shown in Fig. 5.

An analysis of the data in the table and the graphs enables us to draw the following conclusions.
An increase in the channel width and the height of the vacuum caused by the capillary forces in the soil and a decrease in evaporation

lead to an increase in the width of the zone of capillary spreading of the water lk and to a broadening of the saturation zone. According
to the data in the upper left and two lower blocks of Table 1, a change in the height of the capillary rise of the water, the capacity of the
stratum and the width of the channel leads to an increase in the width L by 30, 113 and 118% respectively. However, evaporation from
the free surface turns out to have the greatest effect on the width of the saturation zone: the data in the right-hand upper block of Table 1
show that, as the parameter � decreases, the value of L increases by 144%.

Evaporation also turns out to have a significant effect on the width of the capillary spreading of the water. It follows from the same
section of Table 1 that, as � decreases, the magnitude of lk increases by 190%. It is clear that the capillarity of the soil has the most significant
effect on the parameter lk: according to the data in the left-hand upper block of Table 1, the width of the capillary spread of the water
increases by a factor of 10.8 when the parameter hk becomes larger.

The lower right-hand block of Table 1 reflects a regularity which is natural from a physical point of view: an increase in the width of the
saturation zone and, conversely, a decrease in the width of the capillary spread of the water, is accompanied by an increase in the capacity
of the stratum T. So, as T changes, the width L increases by a factor of 2.13 and the width lk decreases by a factor of almost 2.45.

It can be seen from the two right-hand blocks of Table 1 that, when � = 0.4 and T = 0.5 and when � = 0.1 and T = 2, we have lk=0.4225
and lk=0.4998 respectively and, consequently, the ratio lk/hk is equal to 1.0613 and 1.2495. Moreover, the values of the ratios become even
higher when T and � decrease. The significant effect of the horizontal intake of water (including in the case of weakly capillary soils), noted
for the first time by Verigin, 15 is therefore confirmed.
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Fig. 5.

The nature of the effect of the governing physical parameters on the seepage flow rate can be judged from the right-hand section of all
the blocks in Table 1: it is clear that the flow rate increases when all the parameters �, hk, l and T increase. At the same time, the flow rate
depends significantly on the stratum capacity; it follows from the lower right-hand block of Table 1 that the flow rate can increase by a
factor of 2.8.

References

1. Polubarinova-Kochina PYa. Theory of the Motion of Ground Waters. Moscow: Gostekhizdat; 1952.
2. Research on Seepage Theory in the USSR (1917-1967). Moscow:Nauka, 1969.
3. Mikhailov GK, Nikolaevskii VN. Motion of liquids and gases in porous media, in: Mechanics in the USSR after 50 years. Moscow:Nauka;1970;2:585–648.
4. Golubev VV. Lectures on the Analytical Theory of Differential Equations. Moscow- Leningrad: Gostekhizdat; 1950.
5. Koppenfels W, Stallman F. Praxis der konformen Abbildung. Berlin: Springer; 1959.
6. Chibrikova LI. On the use of the Riemann boundary-value problem to construct integral representations of certain solutions of equations of the Fuchs class. In: The Theory

of Functions of a Complex Variable and Boundary-Value Problems. Cheboksary: Izd. Chuvash Univ; 1983, 160–172.
7. Tsitskishvili AR. Conformal mapping of a half plane into circular polygons. Dokl Akad Nauk SSSR 1973;211(2):300–3.
8. Bereslavskii EN. Conformal mapping of circular polygons with cuts onto the upper half plane. Sib Mat Zh 1981;22(3):204–7.



180 E.N. Bereslavskii / Journal of Applied Mathematics and Mechanics 74 (2010) 171–180

9. Bereslavskii EN, Kochina PYa. Some equations of the Fuchs class in fluid dynamics. Izv Ross Akad Nauk MZhG 1992;5:3–7.
10. Bereslavskii EN, Kochina PYa. Differential equations of the Fuchs class encountered in some problems of fluid mechanics. Izv Ross Akad Nauk MZhG 1997;5:9–17.
11. Kochina PYa, Bereslavskii EN, Kochina NN. Analytical theory of linear differential equations of the Fuchs class and some problems of underground hydromechanics. Part 1,

Preprint No. 567. Moscow: Inst Probl Mekhaniki Ross. Akad Nauk; 1996.
12. Bereslavskii EN. A case of the conformal mapping of circular quadrangles by means of elementary functions. Ukr Mat Zh 1985;37(3):356–7.
13. Bereslavskii EN. Integration in closed form of one class of Fuchs equations and its application. Differents Uravneniya 1989;25(6):1048–9.
14. Bereslavskii EN. Differential equations of the Fuchs class associated with the conformal mapping of circular polygons in polar nets. Differents Uravneniya

1997;33(3):296–301.
15. Verigin NN. Seepage of water from the sprinkler of an irrigation system. Dokl Akad Nauk SSSR 1949;66(4):589–92.
16. Verigin NN. Several cases of the rise of ground waters in the case of general and local enhanced seepage. Inzh Sbornik 1950:721–34.
17. Bereslavskii EN, Panasenko LA. Determination of the dimensions of the saturation zone in the case of seepage from a channel of shallow water. Zh Prikl Mekh Tekh Fiz

1981;5:92–4.

Translated by E. L. S.


	Investigation of the effect of seepage or evaporation from a free surface by the method of circular polygons
	Solution of the problem of the conformal mapping of a circular quadrangle {π/2, πν, 2π, π/2} in polar nets. The parameter ...
	Construction of the integrals of an equation of the Fuchs class with five singular points corresponding to the problem of ...
	Solution of the problem of the conformal mapping of a circular pentagon {π/2, πα, 2π, πβ, −π/2} which does not belong to t...
	Application of the results. The problem of determining the dimensions of the saturation zone in the case of seepage from a...
	Analysis of the numerical results
	References


